Multiplexed Measurement of Neurochemicals with Carbon-Fiber Multielectrode Array Biosensors
Carbon fiber microelectrodes (CFMEs) have been used to detect neurotransmitters and other biomolecules using fast-scan cyclic voltammetry (FSCV) for the past few decades. These assays typically measure small molecule neurotransmitters such as dopamine and serotonin. The carbon fiber is relatively small, biocompatible, and makes minimally invasive measurements at high spatial and temporal resolution. Carbon Fiber Multielectrode arrays have been utilized to measure multiple neurotransmitters in several brain regions simultaneously with multi-waveform application on each electrode. We have extended this work to measure larger molecule neuropeptides such as Neuropeptide Y and Oxytocin, a pleiotropic peptide hormone, is physiologically important for adaptation, development, reproduction, and social behavior. This neuropeptide functions as a stress-coping molecule, an anti-inflammatory agent, and serves as an antioxidant with protective effects especially during adversity or trauma. Here, we measure tyrosine using the Modified Sawhorse Waveform (MSW), enabling enhanced electrode sensitivity for the amino acid and peptide, decreased surface fouling, and codetection with other catecholamines. As both oxytocin and Neuropeptide Y contain tyrosine, the MSW was also used to detect these neuropeptides. Additionally, we demonstrate that applying the MSW on CFMEs allows for real time measurements of exogenously applied neuropeptides on rat brain slices. These results may serve as novel assays for neuropeptide detection in a fast, sub-second timescale with possible implications for in vivo measurements and further understanding of the physiological role of neuropeptides such as Neuropeptide Y and oxytocin. Further work will be discussed on extending these assays to develop novel enzyme-modified glutamate biosensors for the rapid measurement of glutamate in the brain.
Event Contact: Rebecca Benson